Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for molecular dynamics simulations.

نویسندگان

  • Ya Zhou
  • Alejandro Strachan
چکیده

We use a mesodynamical method, denoted dynamics with implicit degrees of freedom (DID), to characterize thermal transport in a model molecular crystal below and above its melting temperature. DID represents groups of atoms (molecules in this case) using mesoparticles and the thermal role of the intramolecular degrees of freedom (DoFs) are described implicitly using their specific heat. We focus on the role of these intramolecular DoFs on thermal transport. We find that thermal conductivity is independent of intramolecular specific heat for solid samples and a linear relationship between the two quantities in liquid samples with the coefficient of proportionality being the mass diffusivity of the mesoparticles. As the temperature of the liquids is increased, thermal conductivity exhibits an increased sensitivity with respect to the specific heat of the internal DoFs due to the enhanced molecular mobility. Based on these results, we propose a simple method to incorporate quantum corrections to thermal conductivity obtained from nonequilibrium molecular dynamics simulations of molecular liquids. Our results also provide insight into the development of thermally accurate coarse grain models of soft materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Thermal conductivity of diamond and related materials from molecular dynamics simulations

Based on the Green–Kubo relation from linear response theory, we calculated the thermal current autocorrelation functions from classical molecular dynamics ~MD! simulations. We examined the role of quantum corrections to the classical thermal conduction and concluded that these effects are small for fairly harmonic systems such as diamond. We then used the classical MD to extract thermal conduc...

متن کامل

CALTECH ASCI TECHNICAL REPORT 111 cit-asci-tr111 Thermal condicutivity of diamond and related materials from molecular dynamics simulations

Based on the Green–Kubo relation from linear response theory, we calculated the thermal current autocorrelation functions from classical molecular dynamics ͑MD͒ simulations. We examined the role of quantum corrections to the classical thermal conduction and concluded that these effects are small for fairly harmonic systems such as diamond. We then used the classical MD to extract thermal conducti...

متن کامل

Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model

 We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 23  شماره 

صفحات  -

تاریخ انتشار 2009